



## Molecular docking, Spectroscopic, NLO, NBO and antimicrobial analysis of (Z)-3-(3-bromophenyl)-1-(1H-imidazol-1-yl) prop-2-en-1-one

<sup>1</sup> K Kumanan, <sup>\*2</sup> R Raj Muhamed, <sup>3</sup> M Raja, <sup>4</sup> V Sathyaranayananamoorthi, <sup>5</sup> M Yaseen Mowlana, <sup>6</sup> S Arulappan

<sup>1, 2, 3, 6</sup> PG & Research, Department of Physics, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu, India

<sup>3</sup> Department of Physics, Govt Thirumagal Mills College, Gudiyattam, Vellore, Tamil Nadu, India

<sup>4</sup> Post Graduate and Research, Department of Physics, PSG College of Arts and Science, Coimbatore, Tamil Nadu, India

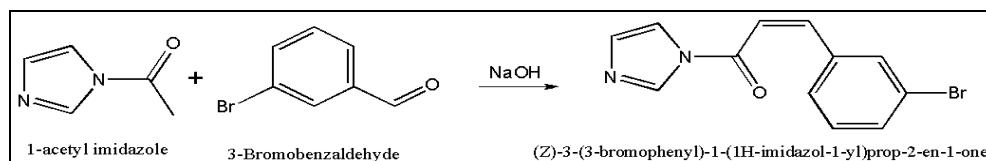
<sup>5</sup> PG & Research, Department of Chemistry, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu, India

### Abstract

The title compound of (Z)-3-(3-bromophenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one (3PIPO) have been synthesized and characterized by spectroscopic techniques. Density functional theory calculations at B3LYP/6-311++G(d) level of theory were performed for geometric parameters, natural bond orbital (NBO) and non linear optical activity analyses of synthesized compound. Stability has been analyzed using natural bond orbital of the molecule arising from hyperconjugative interactions and charge delocalization analysis. The dipole moment and first hyperpolarizabilities of the studied compounds indicate that the compound is a good candidate of nonlinear optical materials. 3PIPO compounds were screened in vitro for antimicrobial activity against three bacterial and three fungal strains and showed promising results. Molecular docking studies reveal that title compound play a vital role in bonding and results draw us to the concluded that title compound inhibit different antimicrobial proteins and that have good biological activities.

**Keywords:** FT-IR, FT-Raman, NLO, NBO, antimicrobial, molecular docking

### 1. Introduction


Heterocyclic compounds are also used in pharmacy and agriculture. Analysis of scientific papers in the last two decades revealed that there is a general trend in research for new drugs involving modification of existing biologically active matrices and molecular design of the structures of compounds. Imidazole is a highly polar one of the five-membered nitrogen containing heterocyclic ring. It is soluble in water. The nitrogen attached with the hydrogen has a lone pair of electrons bringing the required 6  $\pi$ -electrons for aromaticity. The hydrogen atom can be located on either of the two nitrogen atoms due to resonance structures of imidazole [1]. Many researchers previously proved Imidazoles and Imidazoles substituent's compounds wide range biological applications. Imidazole drugs have broadened scope in clinical medicines. Medicinal properties of imidazoles include anti-inflammatory, anticancer, anticoagulants, antifungal, antibacterial, antitubercular, antiviral, antimarial and antidiabetic [2, 6]. Its molecular formula is C12H9BrN2O. Based on above consideration and in continuation of our ongoing work on the development of imidazole analogues as antimicrobial agents, we report here the synthesis of (Z)-3-(3-

bromophenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one (3PIPO) with anticipated antimicrobial activities, by clubbing imidazole with 3-bromophenyl groups as spacers in one framework. The title compound has been theoretically investigated by applying density functional theory (DFT) to understand the structure activity relationship.

### 2. Materials and Methods

#### 2.1. Synthesis

For the synthesis of (Z)-3-(3-bromophenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one (3PIPO) compound, the equimolar quantity of 1-acetyl imidazole (0.01 mol) and 3-Bromobenzaldehyde (0.01 mol) were dissolved in 20 ml of ethanol in a 150 mL round-bottomed flask. The reaction mixture was magnetically stirred for 3h in ice-cold condition, during stirring 10 ml of 10% sodium hydroxide solution was added dropwise. A flocculants precipitate was formed. The precipitate was filtered and washed with cold water. The solid obtained was purified by column chromatography using silica gel 60-120 mesh and n-hexane: acetone (7:3 v/v) as elute. The reaction scheme is shown in Fig.1.

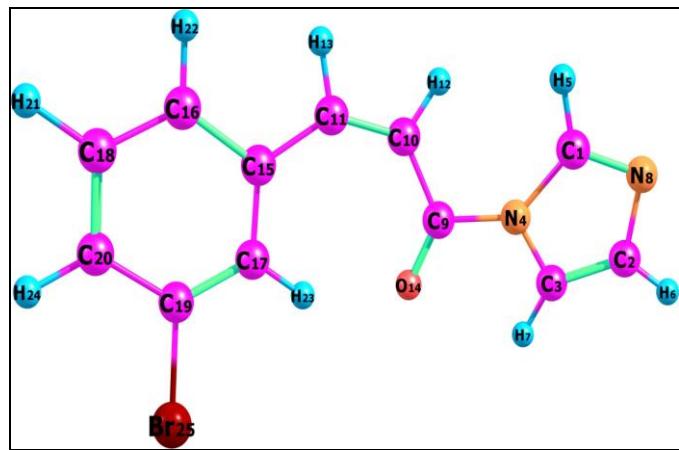


**Fig 1:** The scheme of the synthesis of (Z)-3-(3-bromophenyl)-1-(1H-imidazol-1-yl) prop-2-en-1-one (3PIPO)

## 2.2 Experimental and Computational details

The experimental FT-Raman and FT-IR spectrum of the title compound were collected from Indian Institute of Technology Madras, Chennai, India. All the quantum chemical calculations are performed by Gaussian 09W [7] software with GaussView 5.0 [8] visualization program. Additionally, the calculated vibrational frequencies were explained by means of the potential energy distribution (PED) analysis of all the fundamental vibration modes by using VEDA 4 program [9]. Molecular docking (ligand-protein) investigations have been performed by using auto Dock 4.2.6 software package.

## 3. Results & Discussion


### 3.1. Molecular Geometry

The Optimized geometrical parameters are calculated using DFT/B3LYP method with 6-311++G (d,p) higher basis set and atom numbering of title molecule is shown in Fig 2. The theoretical results are compared with related molecule such as (Z)-3-(9-Anthryl)-1-(4-chlorophenyl)-2-(4-nitro-1H-imidazol-1-yl) prop-2-en-1-one [10]. This title molecule has ten C - C bond lengths, nine C - H bond lengths, five C - N bond lengths, one (C - O, C - Br) bond length presented in title molecule and these values are listed in Table 1. The highest bond length was calculated for C9-C10 found to be 1.488 Å

**Table 1:** Optimized geometrical parameters of (Z)-3-(3-bromophenyl)-1-(1H-imidazol-1-yl) prop-2-en-1-one (3PIPO) obtain by B3LYP/6-311++G (d,p) basis set.

| Parameters     | Experimental <sup>a</sup> | B3LYP/6-311++G (d,p) | Parameters    | Experimental <sup>a</sup> | B3LYP/6-311++G (d,p) |
|----------------|---------------------------|----------------------|---------------|---------------------------|----------------------|
| Bond length(Å) |                           |                      | Bond angle(°) |                           |                      |
| C1-N4          | 1.369                     | 1.392                | N4-C1-H5      | 123.9                     | 122.8                |
| C1-H5          | 0.930                     | 1.077                | N4-C1-N8      | 112.2                     | 112.0                |
| C1-N8          | 1.305                     | 1.301                | C1-N4-C3      | 106.9                     | 105.8                |
| C2-C3          | 1.357                     | 1.361                | C1-N4-C9      | 128.0                     | 130.7                |
| C2-H6          | 0.930                     | 1.078                | H5-C1-N8      | 123.9                     | 125.2                |
| C2-N8          | 1.369                     | 1.388                | C1-N8-C2      | 106.9                     | 105.6                |
| C3-N4          | 1.369                     | 1.392                | C3-C2-H6      | 127.9                     | 128.1                |
| C3-H7          | 0.930                     | 1.075                | C3-C2-N8      | 112.8                     | 110.8                |
| N4-C9          | 1.437                     | 1.427                | C2-C3-N4      | 104.2                     | 105.8                |
| C9-C10         | 1.488                     | 1.493                | C2-C3-H7      | 127.9                     | 133.3                |
| C9-O14         | 1.216                     | 1.214                | H6-C2-N8      | 123.9                     | 121.1                |
| C10-C11        | 1.355                     | 1.355                | N3-C3-H7      | 123.9                     | 120.9                |
| C10-H12        | 0.930                     | 1.082                | C3-N4-C9      | 125.0                     | 123.4                |
| C11-H13        | 0.930                     | 1.088                | N4-C9-C10     | 116.1                     | 115.0                |
| C11-C15        | 1.488                     | 1.464                | N4-C9-O14     |                           | 118.3                |
| C15-C16        | 1.415                     | 1.410                | C10-C9-O14    | 120.9                     | 126.7                |
| C15-C17        | 1.408                     | 1.409                | C9-C10-C11    | 129.3                     | 130.4                |
| C16-C18        | 1.389                     | 1.388                | C9-C10-H12    | 115.3                     | 114.8                |
| C16-H22        | 0.930                     | 1.084                | C11-C10-H12   | 115.3                     | 114.7                |
| C17-C19        | 1.389                     | 1.388                | C10-C11-H13   | 115.3                     | 112.3                |
| C17-H23        | 0.930                     | 1.079                | C10-C11-C15   | 129.3                     | 136.7                |
| C18-C20        | 1.389                     | 1.393                | H13-C11-C15   | 115.3                     | 111.0                |
| C18-H21        | 0.930                     | 1.084                | C11-C15-C16   | 117.9                     | 115.8                |
| C19-C20        | 1.389                     | 1.393                | C16-C15-C17   | 123.5                     | 125.8                |
| C19-Br25       | -                         | 1.918                | C16-C15-C17   | 118.3                     | 118.3                |
| C20-H24        | 0.930                     | 1.082                | C15-C16-C18   | 121.0                     | 121.2                |
|                |                           |                      | C15-C16-H22   | 119.3                     | 119.3                |
|                |                           |                      | C15-C17-C19   | 119.4                     | 119.4                |
|                |                           |                      | C15-C17-H23   | 119.8                     | 119.8                |
|                |                           |                      | C18-C16-H22   | 119.5                     | 119.5                |
|                |                           |                      | C16-C18-C20   | 120.4                     | 120.2                |
|                |                           |                      | C16-C18-H21   | 120.5                     | 120.1                |

(experimental) and 1.493 Å (theoretical) respectively. The calculated bond length values for C-C and C-H in the benzene ring vary from 1.385-1.361 Å and 1.088-0.930 Å by B3LYP/6-311++G (d,p) basis set and well agreed with experimental values<sup>[10]</sup>. From table 1 shows the calculated and experimental results are very good agreement.



**Fig 2:** The theoretical optimized geometric structure with atoms numbering of 3PIPO

|  |  |  |              |       |       |
|--|--|--|--------------|-------|-------|
|  |  |  | C19-C17-H23  | 120.7 | 120.7 |
|  |  |  | C17-C19-C20  | 122.4 | 122.1 |
|  |  |  | C17-C19-Br25 |       | 119.0 |
|  |  |  | C20-C18-H21  | 119.6 | 119.6 |
|  |  |  | C18-C20-C19  | 118.6 | 118.6 |
|  |  |  | C18-C20-H24  | 120.7 | 120.9 |
|  |  |  | C20-C19-Br25 |       | 118.9 |
|  |  |  | C19-C20-H24  | 120.5 | 120.5 |

<sup>a</sup>Taken from Ref [10]

### 3.2. Vibrational Analysis

Vibrational spectroscopy is used extensively in organic chemistry for the identification of functional groups of organic compounds, the study of molecular confirmations, kinetics, reaction etc. The (Z)-3-(3-bromophenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one (3PIPO) molecule consists of 25 atoms, which has 69 normal modes of vibration. The comparative observed and simulated FT-IR and FT-Raman spectra are shown in Fig. 3 and 4. IR intensity, Raman activity, Unscaled and Scaled frequencies are tabulated in Table 2.

#### 3.2.1. C-H vibrations

In the heterocyclic compounds, the C-H stretching wavenumbers appear in the range 3000-3100  $\text{cm}^{-1}$  [11]. In this present study, the C-H stretching vibrations are observed at 3137, 3114 and 3079  $\text{cm}^{-1}$  by B3LYP/6-311++G (d,P) method show good agreements with experimental vibrations. The bands observed in the recorded FTIR spectrum 3107(m), 3085(m), cm-1 and 3147(w), 3080(w)  $\text{cm}^{-1}$  in FT-Raman. The PED corresponding to this pure mode of title molecule contributed 99, 87 and 96 % is shown in Table 2.

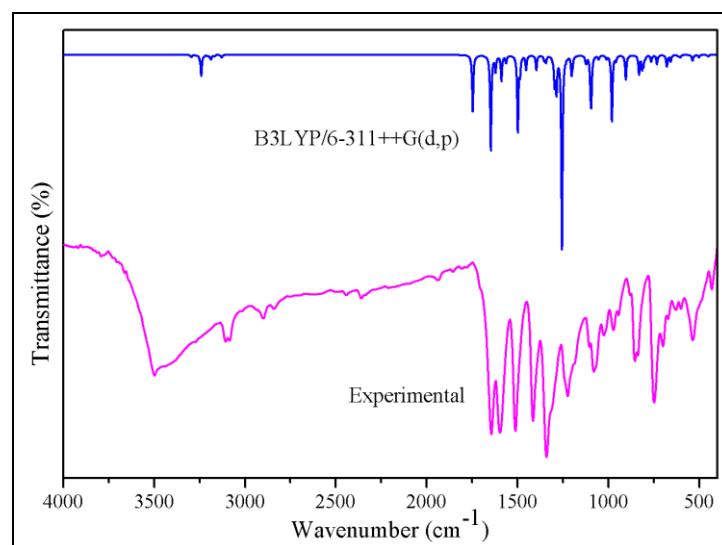



Fig 3: Experimental and theoretical FT-IR spectra of 3PIPO



Fig 4: Experimental and theoretical FT-Raman spectra of 3PIPO

### 3.2.2 C-C ring vibrations

The C-C stretching vibrations are expected in the range from 1650 to 1100  $\text{cm}^{-1}$  which are not significantly influenced by the nature of the substituents [12]. The C-C stretching vibrations of the 34FIPO compound were observed from 1600 to 810  $\text{cm}^{-1}$ . In this present study, the C-C stretching vibrations are found at 1645(vs), 1597(vs), 1515(vs), 1080(s), 1026(m), 945(m)  $\text{cm}^{-1}$  in FT-IR and 1588(vs), 1369(m), 982(w)  $\text{cm}^{-1}$  in FT-Raman respectively. The theoretical wavenumbers at 1678, 1583, 1526, 1342, 1078, 1013, 979 and 942  $\text{cm}^{-1}$  are assigned as C-C stretching vibrations with PED contribution of 80, 50, 56, 39, 10, 12, 83 and 34% respectively.

### 3.2.2 C-N vibrations

The C-N stretching frequency is a very tough task since it falls in a composite region of the vibrational spectrum, i.e., mixing of several bands are possible in this region [13] assigned C-N stretching absorption in the region 1386-1266  $\text{cm}^{-1}$  for the aromatic compound. The bands observed at 1224(s), 1080(s)  $\text{cm}^{-1}$  in FT-IR and 1393(w), 1239(m), 1066(w) in FT-Raman are assigned as C-N stretching vibrations. The theoretically scaled wavenumbers calculated at 1396, 1235, 1078  $\text{cm}^{-1}$  are assigned as C-N stretching vibrations with PED contribution of 38, 67 and 37% respectively.

### 3.3. HOMO-LUMO analysis

The highest occupied molecular orbitals (HOMOs) and the lowest-lying unoccupied molecular orbitals (LUMOs) are

named as frontier molecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties, as well as in quantum chemistry. The HOMO-LUMO energies are clearly explained in molecular structural activity. So, many researchers interest to investigate structural activities in recent years. The electronic properties are precisely reported in many researchers in various organic compounds [14, 15]. The HOMO-LUMO energies and other related properties of energy gap, ionization potential (I), the electron affinity (A), the absolute electronegativity ( $\chi$ ), the absolute hardness ( $\eta$ ) and softness (S) for the 3PIPO molecule have been calculated and values are given in table 3. The molecular energy transfer of 3PIPO compound is shown in Fig 5. HOMO and LUMO energy values for a molecule, electronegativity and chemical hardness can be calculated as follow:

$$\chi = (I+A)/2 \text{ (Electronegativity)} \quad (1)$$

$$\mu = - (I+A)/2 \text{ (Chemical potential)} \quad (2)$$

$$\eta = (I-A)/2 \text{ (Chemical hardness)} \quad (3)$$

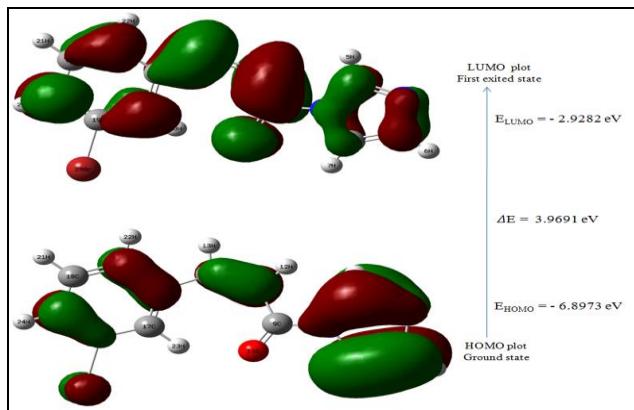
$$S=1/2\eta \text{ (chemical softness)} \quad (4)$$

$$\omega=\mu/2\eta \text{ (Electrophilicity index)} \quad (5)$$

Where I and A are ionization potential and electron affinity;  $I = - \text{EHOMO}$  and  $A = - \text{ELUMO}$  respectively. The ground state (HOMO) energy is -6.8973 eV and the first exited state (LUMO) energy is -2.9282 eV. The ground state and first exited state energy gap of 3PIPO is found to be 3.9691 eV. Hence, the energy gap of title compound 3PIPO is low. This energy gap is elucidate the eventual charge transfer occur within the molecule.

**Table 2:** Calculated vibrational frequencies ( $\text{cm}^{-1}$ ) assignments of (Z)-3-(3-bromophenyl)-1-(1H-imidazol-1-yl) prop-2-en-1-one (3PIPO) based on B3LYP/6-311++G(d,p) basis set.

| Mode no | Experimental wave number ( $\text{cm}^{-1}$ ) |          | Theoretical wave number( $\text{cm}^{-1}$ ) |        | IIR <sup>c</sup> | IRAMAND <sup>d</sup> | Assignments (PED) <sup>a,b</sup>                                |
|---------|-----------------------------------------------|----------|---------------------------------------------|--------|------------------|----------------------|-----------------------------------------------------------------|
|         | FTIR                                          | FT-RAMAN | Unscaled                                    | scaled |                  |                      |                                                                 |
| 69      | -                                             | -        | 3295                                        | 3167   | 1                | 5                    | $\gamma\text{CH}(95)$                                           |
| 68      | -                                             | 3147(w)  | 3265                                        | 3137   | 0                | 4                    | $\gamma\text{CH}(97)$                                           |
| 67      | -                                             | -        | 3248                                        | 3122   | 1                | 11                   | $\gamma\text{CH}(95)$                                           |
| 66      | 3107(m)                                       | -        | 3240                                        | 3114   | 11               | 4                    | $\gamma\text{CH}(99)$                                           |
| 65      | 3085(m)                                       | 3080(w)  | 3204                                        | 3079   | 0                | 14                   | $\gamma\text{CH}(87)$                                           |
| 64      | -                                             | -        | 3192                                        | 3068   | 1                | 6                    | $\gamma\text{CH}(96)$                                           |
| 63      | -                                             | -        | 3186                                        | 3062   | 2                | 11                   | $\gamma\text{CH}(92)$                                           |
| 62      | -                                             | -        | 3170                                        | 3046   | 1                | 4                    | $\gamma\text{CH}(92)$                                           |
| 61      | -                                             | 3017(w)  | 3128                                        | 3006   | 1                | 3                    | $\gamma\text{OC}(96)$                                           |
| 60      | 1645(vs)                                      | -        | 1746                                        | 1678   | 29               | 10                   | $\gamma\text{CC}(80)$                                           |
| 59      | 1597(vs)                                      | 1588(vs) | 1647                                        | 1583   | 49               | 79                   | $\gamma\text{CC}(50)$                                           |
| 58      | -                                             | -        | 1621                                        | 1558   | 8                | 100                  | $\gamma\text{CC}(55)+\beta\text{HCC}(16)$                       |
| 57      | 1512(vs)                                      | -        | 1588                                        | 1526   | 13               | 25                   | $\gamma\text{CC}(56)$                                           |
| 56      | -                                             | -        | 1563                                        | 1502   | 4                | 6                    | $\gamma\text{CC}(72)+\beta\text{HCN}(15)$                       |
| 55      | -                                             | -        | 1506                                        | 1447   | 0                | 3                    | $\gamma\text{HCN}(45)+\beta\text{HCCN}(20)$                     |
| 54      | -                                             | 1435(m)  | 1498                                        | 1440   | 39               | 2                    | $\beta\text{HCC}(38)+\gamma\text{HCCH}(11)$                     |
| 53      | 1415(s)                                       | -        | 1486                                        | 1428   | 8                | 5                    | $\beta\text{HCC}(71)$                                           |
| 52      | -                                             | 1393(w)  | 1453                                        | 1396   | 7                | 5                    | $\gamma\text{NC}(38)+\gamma\text{HCN}(13)$                      |
| 51      | -                                             | 1369(m)  | 1396                                        | 1342   | 8                | 1                    | $\gamma\text{CC}(39)+\beta\text{CC}(13)$                        |
| 50      | -                                             | -        | 1353                                        | 1300   | 2                | 17                   | $\gamma\text{HCC}(30)+\beta\text{HCN}(23)$                      |
| 49      | -                                             | -        | 1344                                        | 1291   | 3                | 1                    | $\gamma\text{NC}(73)$                                           |
| 48      | -                                             | -        | 1308                                        | 1257   | 1                | 5                    | $\gamma\text{HCN}(48)$                                          |
| 47      | -                                             | -        | 1296                                        | 1246   | 14               | 0                    | $\beta\text{HCC}(33)+\gamma\text{HCC}(37)$                      |
| 46      | 1224(s)                                       | 1239(m)  | 1285                                        | 1235   | 18               | 1                    | $\gamma\text{NC}(67)$                                           |
| 45      | -                                             | -        | 1255                                        | 1206   | 100              | 1                    | $\gamma\text{HCC}(15)+\beta\text{HCCN}(35)+\gamma\text{CC}(10)$ |
| 44      | -                                             | 1172(s)  | 1202                                        | 1155   | 9                | 7                    | $\gamma\text{HCCC}(17)+\beta\text{HCC}(52)$                     |


|    |         |         |      |      |    |   |                                                                     |
|----|---------|---------|------|------|----|---|---------------------------------------------------------------------|
| 43 | -       | -       | 1197 | 1150 | 3  | 4 | $\gamma$ NC(33)+ $\gamma$ CC(10)+ $\beta$ CNC(18)                   |
| 42 | -       | -       | 1126 | 1082 | 1  | 1 | $\gamma$ HCC(53)                                                    |
| 41 | 1080(s) | 1066(w) | 1122 | 1078 | 3  | 0 | $\beta$ CNC(10)+ $\gamma$ CC(10)+ $\gamma$ NC(37)                   |
| 40 | -       | -       | 1098 | 1055 | 13 | 0 | $\gamma$ HCCC(48)                                                   |
| 39 | -       | -       | 1094 | 1051 | 21 | 7 | $\gamma$ HCC(11)+ $\beta$ HNC(21)                                   |
| 38 | 1026(m) | -       | 1054 | 1013 | 2  | 0 | $\gamma$ CC(12)+ $\beta$ HCC(12)+ $\beta$ HCCN(24)+ $\beta$ HNC(13) |
| 37 | -       | 982(w)  | 1019 | 979  | 0  | 1 | $\tau$ CC(83)                                                       |
| 36 | 973(m)  | -       | 1011 | 972  | 2  | 7 | $\gamma$ HCNC(30)+ $\beta$ HCC(30)                                  |
| 35 | -       | -       | 992  | 953  | 0  | 0 | $\tau$ CC(85)                                                       |
| 34 | 945(m)  | 940(w)  | 980  | 942  | 34 | 1 | $\tau$ CC(34)+ $\beta$ HNC(11)                                      |
| 33 | -       | 905(w)  | 958  | 921  | 3  | 0 | $\tau$ HCC(85)                                                      |
| 32 | 881(w)  | 883(w)  | 923  | 887  | 0  | 0 | $\tau$ HCN(82)                                                      |
| 31 | -       | -       | 909  | 873  | 0  | 1 | $\beta$ HCC(77)                                                     |
| 30 | -       | -       | 904  | 869  | 12 | 0 | $\beta$ HCCH(-60)+ $\beta$ HCC(10)                                  |
| 29 | 855(m)  | 857(w)  | 892  | 857  | 0  | 0 | $\tau$ HCCN(88)+ $\tau$ HCCO(10)                                    |
| 28 | -       | 794(w)  | 832  | 799  | 10 | 0 | $\tau$ CC(77)                                                       |
| 27 | -       | -       | 815  | 783  | 6  | 0 | $\tau$ HCCC(16)                                                     |
| 26 | -       | -       | 807  | 776  | 5  | 0 | $\tau$ HCCN(68)                                                     |
| 25 | -       | 754(w)  | 797  | 766  | 1  | 0 | $\tau$ HCNC(65)                                                     |
| 24 | 749(s)  | 725(w)  | 765  | 735  | 3  | 0 | $\tau$ HCN(10)+ $\gamma$ HCNC(81)                                   |
| 23 | -       | -       | 733  | 704  | 5  | 0 | $\tau$ HCC(75)                                                      |
| 22 | -       | 656(w)  | 679  | 653  | 4  | 1 | $\gamma$ CNC(13)                                                    |
| 21 | -       | -       | 676  | 650  | 3  | 0 | $\tau$ HCNC(78)                                                     |
| 20 | 629(w)  | 631(w)  | 657  | 632  | 3  | 0 | $\tau$ HCNC(89)                                                     |
| 19 | -       | 593(w)  | 616  | 592  | 1  | 0 | $\tau$ HCC(75)                                                      |
| 18 | -       | 564(w)  | 605  | 582  | 1  | 0 | $\beta$ CNC(48)                                                     |
| 17 | -       | 533(w)  | 537  | 516  | 3  | 0 | $\beta$ HCCO(58)                                                    |
| 16 | -       | 515(w)  | 528  | 507  | 0  | 1 | $\tau$ CC(71)                                                       |
| 15 | -       | 472(w)  | 503  | 483  | 1  | 1 | $\gamma$ HCN(32)+ $\beta$ HCCC(14)                                  |
| 14 | 431(w)  | 448(w)  | 452  | 435  | 1  | 0 | $\tau$ HCCC(81)                                                     |
| 13 | -       | 358(w)  | 373  | 359  | 0  | 0 | $\tau$ CNC(68)                                                      |
| 12 | -       | 328(w)  | 332  | 319  | 2  | 0 | $\beta$ BrC(60)                                                     |
| 11 | -       | -       | 313  | 301  | 0  | 1 | $\beta$ HCC(12)+ $\tau$ HCNC(21)+ $\tau$ HCCC(45)                   |
| 10 | -       | 292(w)  | 296  | 284  | 1  | 0 | $\tau$ CNC(72)                                                      |
| 9  | -       | 221(w)  | 227  | 218  | 1  | 0 | $\beta$ HCCN(52)+ $\tau$ HCCBr(11)                                  |
| 8  | -       | 172(w)  | 193  | 185  | 0  | 0 | $\gamma$ CNC(56)                                                    |
| 7  | -       | 172(w)  | 168  | 162  | 0  | 0 | $\tau$ CNCC(71)                                                     |
| 6  | -       | -       | 142  | 137  | 1  | 0 | $\tau$ HCC(50)+ $\beta$ HCCC(14)                                    |
| 5  | -       | -       | 125  | 120  | 0  | 0 | $\beta$ HCCN(11)+ $\tau$ HCCBr(51)                                  |
| 4  | -       | -       | 79   | 76   | 0  | 0 | $\tau$ HCN(47)+ $\beta$ CC(11)                                      |
| 3  | -       | -       | 57   | 54   | 0  | 0 | $\beta$ BrC(10)+ $\tau$ HCC(27)+ $\beta$ CC(13)                     |
| 2  | -       | -       | 24   | 23   | 0  | 0 | $\tau$ CNCC(76)                                                     |
| 1  | -       | -       | 13   | 13   | 0  | 0 | $\tau$ HCCN(73)                                                     |

<sup>a</sup> $\gamma$ -stretching,  $\beta$ - bending,  $\tau$ -torsion, vs-very strong, s- strong, m-medium, w-weak, vw-very weak.

<sup>b</sup>scaling factor : 0.961 for B3LYP/6-311+G(d,p)

<sup>c</sup>Relative absorption intensities normalized with highest peak absorption equal to 100.

<sup>d</sup>Relative Raman intensities normalized to 100.



**Fig 5:** Highest occupied and lowest unoccupied molecular orbital of 3PIPO obtain with B3LYP/6-311++G (d,p) method

**Table 3:** Calculated energy values of title compound by B3LYP/6-311++G (d,p) method.

| Basis set                    | B3LYP/6-311++G(d,p) |
|------------------------------|---------------------|
| $E_{\text{Homo}}(\text{eV})$ | -6.8973             |
| $E_{\text{Lumo}}(\text{eV})$ | -2.9282             |
| Ionization potential         | 6.8973              |
| Electron affinity            | 2.9282              |
| Energy gap(eV)               | 3.9691              |
| Electronegativity            | 4.9128              |
| Chemical potential           | -4.9128             |
| Chemical hardness            | 1.9846              |
| Chemical softness            | 0.2519              |
| Electrophilicity index       | 6.0808              |

### 3.3. NLO Activity

The non linear optical properties are calculated theoretically using same theoretical methodology. M. Raja *et al* [16] reported first order hyperpolarizability, total dipole moments and polarizability of organic compound. P. Rajesh *et al* [15] reported NLO activity compounds used to many communications systems. The title compound calculated NLO result compare to Urea compounds. Urea is one of the standard NLO activity molecules. It is used to comparative purpose only. The calculated dipole moment and hyperpolarizability values obtained from B3LYP/6-311++G (d,p) methods are listed in Table 4. The first order hyperpolarizability of 3PIPO with B3LYP/6-311++G (d,p) basis set is  $12.5860 \times 10^{-30}$  twenty times greater than the value of urea ( $\beta_0 = 0.6230 \times 10^{-30}$  esu).

**Table 4:** The values of calculated dipole moment  $\mu$  (D), polarizability ( $\alpha_0$ ), first order hyperpolarizability ( $\beta_{\text{tot}}$ ) components of 3PIPO

| Parameters             | B3LYP/6-311++G (d,p)     | Parameters                   | B3LYP/6-311++G (d,p)      |
|------------------------|--------------------------|------------------------------|---------------------------|
| $\mu_x$                | -2.3735                  | $\beta_{xxx}$                | -1158.6803                |
| $\mu_y$                | 0.4154                   | $\beta_{xyy}$                | -133.3448                 |
| $\mu_z$                | 0.2752                   | $\beta_{xyy}$                | -31.9993                  |
| $\mu(D)$               | 2.4252                   | $\beta_{yyy}$                | 101.6175                  |
| $\alpha_{xx}$          | 303.6340                 | $\beta_{zxx}$                | -543.9556                 |
| $\alpha_{xy}$          | 24.4427                  | $\beta_{xyz}$                | -46.957                   |
| $\alpha_{yy}$          | 126.5590                 | $\beta_{zyy}$                | 82.0438                   |
| $\alpha_{xz}$          | 54.0248                  | $\beta_{xzz}$                | -248.146                  |
| $\alpha_{yz}$          | 31.9933                  | $\beta_{yzz}$                | 44.9558                   |
| $\alpha_{zz}$          | 207.5966                 | $\beta_{zzz}$                | 234.1959                  |
| $\alpha_0$ (e.s.u)     | $3.1507 \times 10^{-23}$ | $\beta_{\text{tot}}$ (e.s.u) | $12.5860 \times 10^{-30}$ |
| $\Delta\alpha$ (e.s.u) | $8.1193 \times 10^{-23}$ |                              |                           |

### 3.4. NBO analysis

NBO analysis is clearly identified molecular nature of donor-acceptor interactions. The many researchers precisely calculated for donor (i)-acceptor (j) integrations and the stabilization energy by using the second-order micro-disturbance theory [17]. A useful aspect of the NBO method is that it gives information about interactions in both filled and virtual orbital spaces that could enhance the analysis of intra- and intermolecular interactions. The higher the E (2) value, the molecular interaction between electron donors and electron acceptors is more intensive and the greater the extent

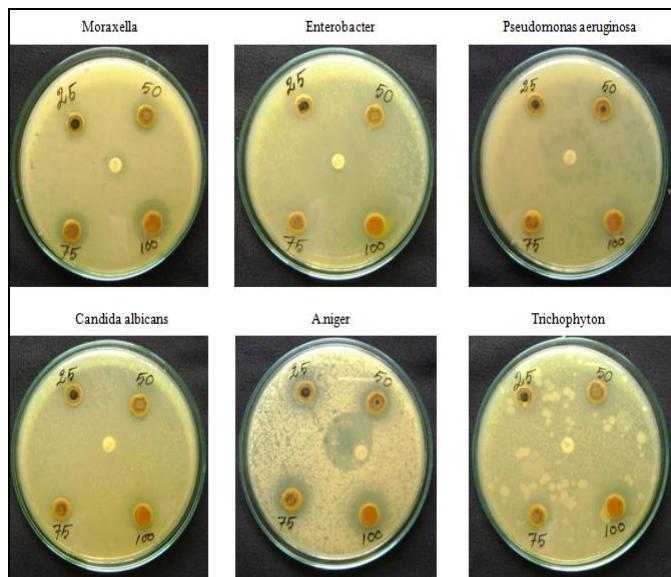
of conjugation of the entire system. Some important second order perturbation energies and molecular orbital interactions investigated from the NBO calculation are listed in Table 5, which shows the very important interactions between Lewis and non-Lewis orbital with Oxygen and nitrogen lone pairs. The very significant interaction between them was the electron donation of LP(1) N<sub>4</sub>, LP(2) N<sub>8</sub>, LP(2) O<sub>14</sub> and LP (3) Br<sub>25</sub> to the neighbouring antibonding acceptor  $\pi^*(C_1-N_8)$ ,  $\pi^*(C_2-C_3)$ ,  $\sigma^*(C_1-N_4)$ ,  $\sigma^*(N_4-C_9)$ ,  $\pi^*(C_9-C_{10})$  and  $\pi^*(C_{19}-C_{20})$  of the 3PIPO energy by 17.190, 12.440, 9.060, 24.500, 9.870 and 10.150 kJ/mol.

**Table 5:** Second order perturbation theory analysis of Fock matrix in NBO basis for (Z)-3-(3-bromophenyl)-1-(1H-imidazol-1-yl) prop-2-en-1-one

| Donor(i)                       | Type     | ED/e   | Acceptor(i)                     | Type       | ED/e   | <sup>a</sup> E(2) (KJ mol <sup>-1</sup> ) | <sup>b</sup> E(J)-E(i) (a.u.) | <sup>c</sup> F(I,j) (a.u.) |
|--------------------------------|----------|--------|---------------------------------|------------|--------|-------------------------------------------|-------------------------------|----------------------------|
| C <sub>1</sub> -N <sub>4</sub> | $\sigma$ | 1.9660 | C <sub>3</sub> -H <sub>7</sub>  | $\sigma^*$ | 0.0113 | 2.920                                     | 1.170                         | 0.052                      |
|                                |          |        | C <sub>9</sub> -O <sub>14</sub> | $\pi^*$    | 0.3155 | 3.940                                     | 0.690                         | 0.050                      |
| C <sub>1</sub> -H <sub>5</sub> | $\sigma$ | 1.9836 | C <sub>1</sub> -N <sub>8</sub>  | $\sigma^*$ | 0.0072 | 0.860                                     | 1.150                         | 0.028                      |
|                                |          |        | C <sub>2</sub> -N <sub>8</sub>  | $\sigma^*$ | 0.0167 | 3.870                                     | 0.950                         | 0.054                      |
|                                |          |        | C <sub>3</sub> -N <sub>4</sub>  | $\sigma^*$ | 0.0221 | 1.680                                     | 0.910                         | 0.035                      |
| C <sub>1</sub> -N <sub>8</sub> | $\sigma$ | 1.9887 | C <sub>2</sub> -H <sub>6</sub>  | $\sigma^*$ | 0.0126 | 2.260                                     | 1.310                         | 0.049                      |
| C <sub>1</sub> -N <sub>8</sub> | $\pi$    | 1.9272 | C <sub>2</sub> -C <sub>3</sub>  | $\pi^*$    | 0.1669 | 11.540                                    | 0.350                         | 0.058                      |
| C <sub>2</sub> -C <sub>3</sub> | $\pi$    | 1.9026 | C <sub>1</sub> -N <sub>8</sub>  | $\pi^*$    | 0.2213 | 9.400                                     | 0.280                         | 0.047                      |
| C <sub>2</sub> -H <sub>6</sub> | $\sigma$ | 1.9857 | C <sub>3</sub> -N <sub>4</sub>  | $\sigma^*$ | 0.0221 | 2.850                                     | 0.880                         | 0.045                      |
| C <sub>2</sub> -N <sub>8</sub> | $\sigma$ | 1.9727 | C <sub>1</sub> -N <sub>4</sub>  | $\sigma^*$ | 0.0533 | 2.260                                     | 0.990                         | 0.043                      |
|                                |          |        | C <sub>1</sub> -H <sub>5</sub>  | $\sigma^*$ | 0.0188 | 5.060                                     | 1.110                         | 0.067                      |
|                                |          |        | C <sub>3</sub> -H <sub>7</sub>  | $\sigma^*$ | 0.0113 | 3.470                                     | 1.140                         | 0.056                      |
| C <sub>3</sub> -N <sub>4</sub> | $\sigma$ | 1.9758 | C <sub>1</sub> -H <sub>5</sub>  | $\sigma^*$ | 0.0188 | 2.450                                     | 1.140                         | 0.047                      |
|                                |          |        | C <sub>2</sub> -H <sub>6</sub>  | $\sigma^*$ | 0.0126 | 2.990                                     | 1.180                         | 0.053                      |

|                                   |          |        |                                   |            |        |        |       |       |
|-----------------------------------|----------|--------|-----------------------------------|------------|--------|--------|-------|-------|
| N <sub>4</sub> -C <sub>9</sub>    | $\sigma$ | 1.9714 | C <sub>10</sub> -C <sub>11</sub>  | $\sigma^*$ | 0.0175 | 2.980  | 1.070 | 0.050 |
| C <sub>9</sub> -O <sub>14</sub>   | $\pi$    | 1.9618 | C <sub>10</sub> -C <sub>11</sub>  | $\pi^*$    | 0.2089 | 5.800  | 0.320 | 0.040 |
| C <sub>10</sub> -C <sub>11</sub>  | $\sigma$ | 1.9822 | N <sub>4</sub> -C <sub>9</sub>    | $\sigma^*$ | 0.0940 | 3.950  | 0.940 | 0.056 |
| C <sub>10</sub> -C <sub>11</sub>  | $\pi$    | 1.7180 | C <sub>9</sub> -O <sub>14</sub>   | $\pi^*$    | 0.3155 | 41.790 | 0.230 | 0.088 |
|                                   |          |        | C <sub>15</sub> -C <sub>17</sub>  | $\pi^*$    | 0.3880 | 12.900 | 0.260 | 0.053 |
| C <sub>10</sub> -H <sub>12</sub>  | $\sigma$ | 1.9805 | C <sub>9</sub> -O <sub>14</sub>   | $\sigma^*$ | 0.0278 | 5.650  | 1.010 | 0.068 |
|                                   |          |        | C <sub>11</sub> -C <sub>15</sub>  | $\sigma^*$ | 0.0232 | 3.940  | 1.090 | 0.059 |
| C <sub>11</sub> -H <sub>13</sub>  | $\sigma$ | 1.9698 | C <sub>9</sub> -C <sub>10</sub>   | $\sigma^*$ | 0.0386 | 3.210  | 1.030 | 0.051 |
|                                   |          |        | C <sub>15</sub> -C <sub>17</sub>  | $\sigma^*$ | 0.0339 | 7.030  | 1.310 | 0.086 |
| C <sub>11</sub> -C <sub>15</sub>  | $\sigma$ | 1.9790 | C <sub>15</sub> -C <sub>16</sub>  | $\sigma^*$ | 0.0264 | 2.630  | 1.740 | 0.060 |
|                                   |          |        | C <sub>15</sub> -C <sub>17</sub>  | $\sigma^*$ | 0.0339 | 3.510  | 1.540 | 0.066 |
| C <sub>15</sub> -C <sub>16</sub>  | $\sigma$ | 1.9682 | C <sub>10</sub> -C <sub>11</sub>  | $\sigma^*$ | 0.0175 | 5.130  | 1.060 | 0.066 |
|                                   |          |        | C <sub>11</sub> -C <sub>15</sub>  | $\sigma^*$ | 0.0232 | 5.080  | 1.260 | 0.072 |
|                                   |          |        | C <sub>15</sub> -C <sub>17</sub>  | $\sigma^*$ | 0.0339 | 3.390  | 1.520 | 0.064 |
|                                   |          |        | C <sub>16</sub> -C <sub>18</sub>  | $\sigma^*$ | 0.0148 | 3.110  | 1.260 | 0.056 |
| C <sub>15</sub> -C <sub>17</sub>  | $\sigma$ | 1.9626 | C <sub>11</sub> -C <sub>15</sub>  | $\sigma^*$ | 0.0232 | 3.390  | 1.250 | 0.058 |
|                                   |          |        | C <sub>15</sub> -C <sub>16</sub>  | $\sigma^*$ | 0.0264 | 2.070  | 1.710 | 0.053 |
|                                   |          |        | C <sub>17</sub> -C <sub>19</sub>  | $\sigma^*$ | 0.0255 | 3.650  | 1.260 | 0.061 |
|                                   |          |        | C <sub>19</sub> -Br <sub>25</sub> | $\sigma^*$ | 0.0341 | 5.070  | 0.810 | 0.057 |
| C <sub>15</sub> -C <sub>17</sub>  | $\pi$    | 1.5556 | C <sub>10</sub> -C <sub>11</sub>  | $\pi^*$    | 0.2089 | 30.540 | 0.230 | 0.080 |
|                                   |          |        | C <sub>16</sub> -C <sub>18</sub>  | $\pi^*$    | 0.2909 | 20.810 | 0.270 | 0.070 |
|                                   |          |        | C <sub>19</sub> -C <sub>20</sub>  | $\pi^*$    | 0.3720 | 17.690 | 0.260 | 0.062 |
| C <sub>16</sub> -C <sub>18</sub>  | $\sigma$ | 1.9768 | C <sub>11</sub> -C <sub>15</sub>  | $\sigma^*$ | 0.0232 | 4.280  | 1.260 | 0.066 |
|                                   |          |        | C <sub>15</sub> -C <sub>16</sub>  | $\sigma^*$ | 0.0264 | 2.370  | 1.720 | 0.057 |
|                                   |          |        | C <sub>18</sub> -C <sub>20</sub>  | $\sigma^*$ | 0.0172 | 2.390  | 1.270 | 0.049 |
|                                   |          |        | C <sub>20</sub> -H <sub>24</sub>  | $\sigma^*$ | 0.0138 | 2.250  | 1.160 | 0.046 |
| C <sub>16</sub> -C <sub>18</sub>  | $\pi$    | 1.6622 | C <sub>15</sub> -C <sub>17</sub>  | $\pi^*$    | 0.3880 | 18.300 | 0.290 | 0.066 |
|                                   |          |        | C <sub>19</sub> -C <sub>20</sub>  | $\pi^*$    | 0.3720 | 23.290 | 0.270 | 0.072 |
| C <sub>16</sub> -H <sub>22</sub>  | $\sigma$ | 1.9803 | C <sub>15</sub> -C <sub>17</sub>  | $\sigma^*$ | 0.0339 | 3.560  | 1.350 | 0.062 |
|                                   |          |        | C <sub>18</sub> -C <sub>20</sub>  | $\sigma^*$ | 0.0172 | 3.380  | 1.100 | 0.054 |
| C <sub>17</sub> -C <sub>19</sub>  | $\sigma$ | 1.9805 | C <sub>15</sub> -C <sub>16</sub>  | $\sigma^*$ | 0.0264 | 8.030  | 1.740 | 0.106 |
|                                   |          |        | C <sub>15</sub> -C <sub>17</sub>  | $\sigma^*$ | 0.0339 | 13.260 | 1.540 | 0.128 |
| C <sub>17</sub> -H <sub>23</sub>  | $\sigma$ | 1.9763 | C <sub>19</sub> -C <sub>20</sub>  | $\sigma^*$ | 0.0271 | 4.280  | 1.070 | 0.060 |
| C <sub>18</sub> -C <sub>20</sub>  | $\sigma$ | 1.9717 | C <sub>19</sub> -C <sub>20</sub>  | $\sigma^*$ | 0.0271 | 3.680  | 1.270 | 0.061 |
|                                   |          |        | C <sub>19</sub> -Br <sub>25</sub> | $\sigma^*$ | 0.0341 | 5.230  | 0.820 | 0.059 |
| C <sub>19</sub> -C <sub>20</sub>  | $\pi$    | 1.6392 | C <sub>15</sub> -C <sub>17</sub>  | $\pi^*$    | 0.3880 | 22.410 | 0.300 | 0.074 |
|                                   |          |        | C <sub>16</sub> -C <sub>18</sub>  | $\pi^*$    | 0.2909 | 16.400 | 0.290 | 0.063 |
| C <sub>19</sub> -Br <sub>25</sub> | $\sigma$ | 1.9850 | C <sub>15</sub> -C <sub>17</sub>  | $\sigma^*$ | 0.0339 | 12.310 | 1.460 | 0.120 |
| C <sub>20</sub> -H <sub>24</sub>  | $\sigma$ | 1.9788 | C <sub>16</sub> -C <sub>18</sub>  | $\sigma^*$ | 0.0148 | 3.520  | 1.080 | 0.055 |
|                                   |          |        | C <sub>17</sub> -C <sub>19</sub>  | $\sigma^*$ | 0.0255 | 4.140  | 1.090 | 0.060 |
| N <sub>4</sub>                    | LP(1)    | 1.7149 | C <sub>1</sub> -N <sub>8</sub>    | $\pi^*$    | 0.2213 | 17.190 | 0.360 | 0.071 |
|                                   |          |        | C <sub>2</sub> -C <sub>3</sub>    | $\pi^*$    | 0.1669 | 12.440 | 0.390 | 0.064 |
|                                   |          |        | C <sub>9</sub> -O <sub>14</sub>   | $\sigma^*$ | 0.0278 | 7.660  | 0.810 | 0.075 |
|                                   |          |        | C <sub>9</sub> -O <sub>14</sub>   | $\pi^*$    | 0.3155 | 4.850  | 0.330 | 0.036 |
| N <sub>8</sub>                    | LP(1)    | 1.9220 | C <sub>1</sub> -N <sub>4</sub>    | $\sigma^*$ | 0.0533 | 9.060  | 0.690 | 0.071 |
|                                   |          |        | C <sub>2</sub> -C <sub>3</sub>    | $\sigma^*$ | 0.0139 | 3.030  | 1.010 | 0.050 |
| O <sub>14</sub>                   | LP(1)    | 1.9767 | C <sub>9</sub> -C <sub>10</sub>   | $\sigma^*$ | 0.0386 | 3.400  | 1.240 | 0.058 |
| O <sub>14</sub>                   | LP(2)    | 1.8833 | N <sub>4</sub> -C <sub>9</sub>    | $\sigma^*$ | 0.0940 | 24.500 | 0.580 | 0.107 |
|                                   |          |        | C <sub>9</sub> -C <sub>10</sub>   | $\sigma^*$ | 0.0386 | 9.870  | 0.790 | 0.080 |
| Br <sub>25</sub>                  | LP(2)    | 1.9744 | C <sub>17</sub> -C <sub>19</sub>  | $\sigma^*$ | 0.0255 | 3.370  | 0.840 | 0.048 |
|                                   |          |        | C <sub>19</sub> -C <sub>20</sub>  | $\sigma^*$ | 0.0271 | 3.540  | 0.840 | 0.049 |
| Br <sub>25</sub>                  | LP(3)    | 1.9312 | C <sub>19</sub> -C <sub>20</sub>  | $\pi^*$    | 0.3720 | 10.150 | 0.290 | 0.053 |

<sup>a</sup>E(2) means energy of hyper conjugative interaction (stabilization energy)


<sup>b</sup>Energy difference between donor and acceptor i and j NBO orbitals.

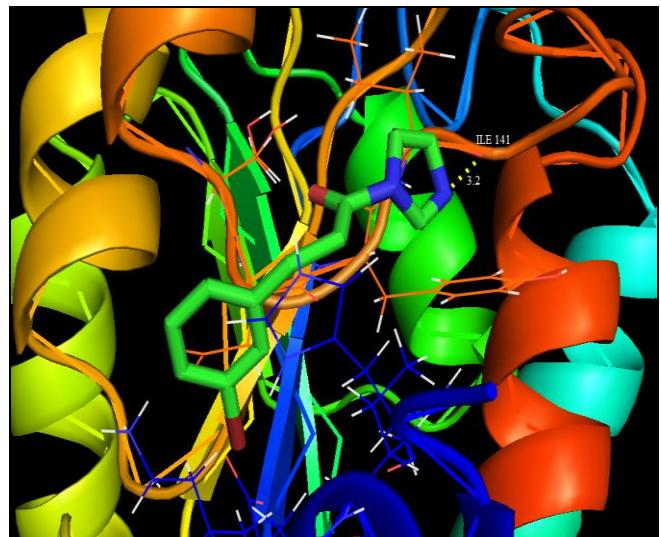
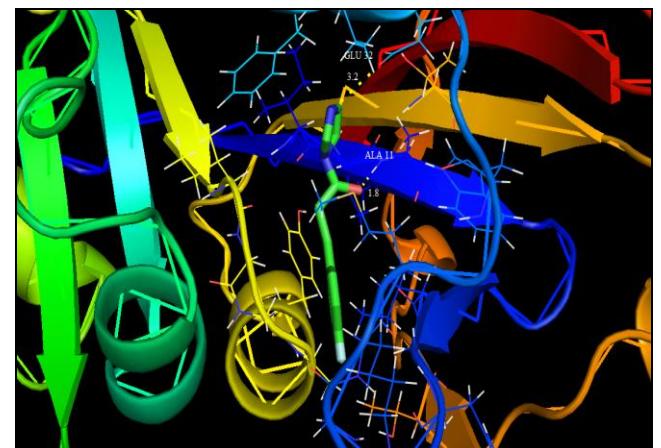
<sup>c</sup>F(i,j) is the Fock matrix element between i and j NBO orbitals

### 3.5. Antimicrobial studies

Antimicrobial (antibacterial and antifungal) activity of DMSO extracts with different concentration (25, 50, 75 and 100  $\mu$ l) inhibition Zone (mm) in agar well diffusion method is tabulated in Tables 6. To further examine the in vitro activity of (Z)-3-(3-bromophenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one (3PIPO) compound and results was compared to standard

drug of Erythromycin. Title compound is more active *Moraxella*, *Enterobacter*, *Pseudomonas aeruginosa*, *Candida albicans*, *A. niger* and *Trichophyton* compared than standard drug. Together, these results indicate that 3PIPO shows broad-spectrum antimicrobial activity against. The activities of 3PIPO against bacterial and fungal pathogens are shown in Fig.6.

**Fig 6:** Antibacterial activity and antifungal activity of title molecule



### 3.6. Molecular docking

Molecular docking is a key tool in structural molecular biology and computer-assisted drug design. Auto Dock is a collection of automated docking tools arranged to predict how miniature scale molecules, such as substrates or drug candidate, bind to a receptor of known three dimensional structures.

**Table 6:** Antimicrobial activity of 3PIPO

| Organism                | DMSO Extract added and Zone of inhibition (mm/ml) |            |            |            |             |
|-------------------------|---------------------------------------------------|------------|------------|------------|-------------|
|                         | Control                                           | 25 $\mu$ l | 50 $\mu$ l | 75 $\mu$ l | 100 $\mu$ l |
| <i>Moraxella</i>        | 10                                                | 12         | 14         | 16         | 20          |
| <i>Enterobacter</i>     | 20                                                | 15         | 20         | 25         | 30          |
| <i>P. aeruginosa</i>    | 20                                                | 11         | 14         | 16         | 20          |
| <i>Candida albicans</i> | 10                                                | 12         | 15         | 18         | 22          |
| <i>A. niger</i>         | 24                                                | 13         | 15         | 18         | 21          |
| <i>Trichophyton</i>     | 09                                                | 10         | 13         | 15         | 19          |

The aim to investigate the binding mode, a molecular modeling study was performed and 3PIPO was selected to be docked into the active site of three receptors 3F03, 4UM7 and 4HOE [18] of antimicrobial proteins which was downloaded from RCSB protein data bank [19]. Docked conformation which had the lowest binding energy was chosen to investigate the mode of binding. The molecular docking binding energies (kcal/mol) and inhibition constants ( $\mu$ M) were also obtained and listed in Table 7. Among them, 4HOE exhibited the lowest free energy at -7.16 kcal/mol and most docked inhibitors interacted with the ligand within the 4HOE binding site. They exhibited up to two hydrogen bonds involving GLY 114 and THR 58 with RMSD being 27.78 Å. The docking simulation shows the best binding mode of the 3PIPO into 3EQA. The 3PIPO ligand interacts with different receptors are shown in Figs.7-9.

**Fig 7:** Docking and Hydrogen bond interactions 3PIPO with chain A of 3F03 protein structure**Fig 8:** Docking and Hydrogen bond interactions 3PIPO with chain A of 4UM7 protein structure**Fig 9:** Docking and Hydrogen bond interactions 3PIPO with chain A of 4HOE protein structure

**Table 7:** Hydrogen bonding and molecular docking with antimicrobial protein targets

| Protein (PDB ID) | Bonded residues | No. of hydrogen bond | Bond distance (Å) | Estimated Inhibition Constant (μm) | Binding energy (kcal/mol) | Reference RMSD (Å) |
|------------------|-----------------|----------------------|-------------------|------------------------------------|---------------------------|--------------------|
| 3F03             | ARG 324         | 2                    | 3.2               | 51.61                              | -5.85                     | 39.01              |
|                  | ARG 324         |                      | 2.4               |                                    |                           |                    |
| 4UM7             | ILE 141         | 1                    | 3.2               | 161.72                             | -5.17                     | 21.68              |
| 4HOE             | GLY 114         | 2                    | 1.9               | 5.62                               | -7.16                     | 27.78              |
|                  | THR 58          |                      | 2.6               |                                    |                           |                    |

#### 4. Conclusions

In this present work, we have reported on complete structural activity, vibrational and electronic properties of synthesized (Z)-3-(3-bromophenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one compound using spectroscopic and computational technique. The vibrational frequencies of the fundamental modes of the compound have been accurately assigned and investigated. Theoretical results were compared with the experimental vibrations. The calculated first hyperpolarizability of the title compound is  $12.5860 \times 10^{-30}$  esu which is comparable with the reported values of similar derivatives and which is twenty times that of the standard NLO material urea. Stability of the molecule arising from hyperconjugative interaction and charge delocalization has been analyzed using NBO analysis. The synthesized compound was tested against three different bacterial and three different fungal strains are exhibited moderate to good activity. The molecular docking output shows that the lowest binding energy for 3PIPO is -7.16 kcal/mol and most docked inhibitors interacted with the ligand within the 4HOE binding site.

#### 5. References

- Verma A, Joshi S, Singh D. Imidazole: Having versatile biological activities. *J Chem*, 2013; 1-12.
- Congiu C, Cocco MT, Onnis V. Design, synthesis and in vitro antitumor activity of new 1, 4-diarylimidazole-2-ones and their 2-thione analogues. *Bioorg Med Chem Lett*, 2008; 18:989-993.
- Siddiqui IR, Singh PK, Srivastava V, Singh J. Facile synthesis of acyclic analogues of carbocyclic nucleoside as potential anti-HIV pro-drug. *Indian Journal of Chemistry*, 2010; 49B:512-520.
- Lin YI, Peterson PJ, Yang Y, Weiss WJ, Shales DM. 5,5,6-Fused tricycles bearing imidazole and pyrazole 6-methylidene penems as broad-spectrum inhibitors of  $\beta$ -lactamases. *Bioorg Med Chem Lett*, 2008; 16:1890-1902.
- Nakamura T, Kakinuma H, Umemiya H, Amada H, Miyata N. Imidazole derivatives as new potent and selective 20-HETE synthase inhibitors. *Bioorg Med Chem Lett*, 2004; 14:333-336.
- Roman G, Riley JG, Vlahakis JZ, Kinobe RT, Brien JF. Heme oxygenase inhibition by 2-oxy-substituted 1-(1H-imidazol-1-yl)-4-phenylbutanes: effect of halogen substitution in the phenyl ring. *Bioorg Med Chem*, 2007; 15:3225-3234.
- Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA. Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2009.
- GaussView, Version 5, Roy Dennington, Todd Keith, and John Millam, *Semichem Inc.*, Shawnee Mission, KS, 2009.
- Jamroz MH, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004.
- Wang GZ, Lu YH, Zhou CH, Zhang YY, (Z)-3-(9-Anthryl)-1-(4-chlorophenyl)-2-(4-nitro-1H-imidazol-1-yl)prop-2-en-1-one, *Acta Cryst. E*65, 2009, 1113.
- Swarnalatha N, Gunasekaran Muthu S, Nagarajan M. Molecular structure analysis and spectroscopic characterization of 9-methoxy-2H-furo[3,2-g]chromen-2-one with experimental FT-IR and FT-Raman techniques and quantum chemical calculations, *Spectrochim. Acta part A*, 2015; 137:721-729.
- Sundaraganesan N, Illakiamani S, Meganathan C, Joshua BD. Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 3-aminobenzotrifluoride, *Spectrochim. Acta A*, 2007; 67:214-224.
- Silverstein RM, Bassler GC, Morill C. *Spectrometric Identification of Organic Compounds*, Wiley, New York, 1981.
- Vanasundari K, Balachandran V, Kavimani M, Narayana B. Molecular docking, vibrational, structural, electronic and optical studies of {4 – (2, 6) dichlorophenyl amino 2-methylidene 4-oxobutanoic acid and 4- (2, 5) dichlorophenyl amino 2-methylidene 4 – oxobutanoic acid – A comparative study, *Journal of Molecular Structure*, 2018; 1155:21-38.
- Rajesh P, Gunasekaran S, GnanaSambandan T, Seshadri S. Experimental, quantum chemical and NBO/NLMO investigations of pantoprazole, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2015; 136:247-255.
- Raja M, Raj Muhammed R, Muthu S, Suresh M, Synthesis. Spectroscopic FT-IR, FT-Raman, NMR, UV-Visible, NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene) semicarbazide, *Journal of Molecular Structure*, 2017; 1141:284-298.
- Srinivasaraghavan R, ThamaraiKannan S, Seshadri S, gnanaSambandan T, Spectrochim. Molecular conformational stability and Spectroscopic analysis of Parared with experimental techniques and quantum chemical calculations, *Acta A*, 2015; 137:1194-1205.
- Ravi Kumar A, Sathaiah G, Chandra Shekhar A, Raju K, Shanthan Rao P, Narsaiah B *et al.* Synthesis of 6-Fluoro-7-cyclic Amino-substituted Dicarboxylic Acid Quinolones and their Antibacterial Activity, *J. Heterocycl. Chem*, 2014; 51:114-122.
- Joselin Beaula T, Hubert Joe I, Rastogi VK, Bena Jothy V, Spectral investigations. DFT computations and molecular docking studies of the antimicrobial 5-nitroisatin dimer, *Che. Phy. Letters*, 2015; 624:93-101.